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Anticonvection with an inclined temperature gradient
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Anticonvection, caused by external heating from above in the presence of heat Joursiek9 homoge-
neously distributed on the interface, is investigated in the presence of an imposed horizontal temperature
gradient. Numerical finite-difference simulations of the finite-amplitude convective regimes have been per-
formed for the two-layer system of fluids. The interface is assumed to be flat. We discuss different scenarios of
transition between multicell regimes characteristic of a vertical temperature gradient, and unicell structures
induced by horizontal gradients. The coexistence of these two regimes in sufficiently long cavities has been
obtained. Regular oscillations are also predicted in other situations.
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[. INTRODUCTION anticonvection in the system of layers with finite thicknesses
was done in Ref[10]. The nonlinear regimes of anticonvec-
It is well known[1] that in a horizontal fluid layer heated tion in a system of layers with finite thicknesses in the pres-
from above, all the disturbances decay either in a monotoni€Nce of heat release on the interface were investigated in Ref.

or oscillatory manner, and the mechanical equilibrium stat 11U' d . tal diti the t t dient
is realized in the system. Paradoxically, it is not actually. nader experimental conditions, the temperature gradien

correct in the presence of the interface between two fluids. Ig1 the system is not perfectly vertical. The horizontal com-

was shown by Welanddg] that when the temperature gra- onent of the temperature gradient generates a convective

dient is directed icall ds. the twol A flow. The influence of this flow on the convective patterns
ient 1S directed vertically upwards, the two-layer Syslem,yonerated by the vertical temperature gradient has been in-

consisting of two immiscible viscqus fluids of infinite thic;k- vestigated in detail in the case of the usual Rayleigh-Benard
nesses, may become unstable with respect to monotonic digyyection(see Refs[13—-15). The stability of thermocap-
turbances. The specific non-Rayleigh mechanism of instabiljjary flows with the inclined temperature gradient was stud-
ity (anticonvection is realized in the system. This jed in Refs.[16,17. To our knowledge, the interaction be-
mechanism of instability may appear only under the definitaween the anticonvection caused by heating from above and
condition that fluids with considerably different physical the convective flow produced by the horizontal component
properties must be taken. Particularly, the heat expansion cef the temperature gradient has never been studied before.
efficient of the upper layer must be much smaller than that offhat is the goal of the present paper.

the lower layer, and the thermal diffusivity of the lower layer In Sec. Il, the mathematical formulation of the problem
must be much higher than that of the upper ¢oe vice and the numerical method are presented. Section Il is de-
versa. The linear stability boundariefor layers of finite voted to the consideration of flows generated by the joint
thicknesses were determined in Ref[3] and the finite- action of the vertical and horizontal components of the tem-
amplitude regimes of anticonvection were obtained in Refperature gradient and heat release on the interface. Section
[4] (see also Refd5,6]). IV contains some concluding remarks.

The phenomenon of anticonvection was considered as
rather exotic during a long time. As the matter of fact, only
one physical systenfwater-mercury satisfying the condi-
tions for the existence of anticonvection was foudd It Let a rectangular cavity with solid boundaries be filled
turns out however that the appearance of anticonvection cay two immiscible viscous fluidésee Fig. 1 The tempera-
be simplified when the interface serves as a source or sink @fire on the horizontal plates=a; andz=—a, is fixed in
heat[7]. Moreover, it was found in Ref48,9] that in the the following way: T(x,y,a;,t) = —Apx+ 6, T(X,y,—a,,t)
presence of an interfacial heat soufsk) the anticonvec- = —Ax,A;,>0. The vertical lateral boundaries=0 andx
tion could be generated iany system of two semi-infinite =I are heat insulated. The constant heat release at the rate
layers. It was shown that the anticonvection appears in th®, (Q, may be positive or negatiyes set on the interface.
situation where the temperature gradient in one fluid is mucfThe interface is assumed to be flat and undeformable. We
smaller than that in another fluid. The difference between thassume also that the thicknesses of the layers are sulfficiently
temperature gradients, sufficient for the appearance of thkarge, so that the thermocapillary effect is negligible as com-
anticonvection, can be caused by the natural difference gbared to the buoyancy effect. A more detailed discussion of
thermophysical parameters of fluids, as in the case of théhese assumptions is given in the Appendix. All variables
water-mercury system, or it can be produced artificially byreferring to the upper layer are marked by index 1, and the
heating or cooling the interface. variables referring to the lower layer are marked by index 2.

The general analysis of conditions for the appearance of Let us use the following notations:

Il. FORMULATION OF THE PROBLEM
AND THE NUMERICAL METHOD
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z v1=v,, z=0; (4)

the continuity of the temperature field,

al

T1=Tp, z=0; ®)

and the continuity of the heat flux normal components,

aT, _aT,  Grg

Koz "oz e O ©)

Y

where Gp=g8:Qoal/ vik, is the modified Grashof number
FIG. 1. Geometrical configuration of the two-layer system anddetermined by the intensity of the interfacial heat release.
coordinate axes. The conditions on the solid lateral boundaries, which are
assumed to be thermally insulated, are
p=p1lpa, v=vilvy, n=mnilny, k=k1lks,
aT

X=)(1/X2, Bzﬁl/BZ’ a=a2/a1, L=|/a1. vm=0, (9_Xm:0, m:1,2, XZO,L. (7)

Herepm, Ym, y Kms Xms , anda,, are, respectively, . . ) , .
the dgﬁsitiéns, Z%emgtié(manfn&ynamicmviscositiez, heatycon- Forltwo-dlmen3|onal flowsi(,=0; the fields ofhphy3|cal

ductivity, thermal diffusivity, heat expansion coefficient, and varla_b es do not depend op), we can introduce the stream
the thickness of themth layer (m=1,2). As the units of function ¢,

length, time, velocity, pressure, and temperature, we choose

a, alvy, vilay, pyvilai, andé, respectively. The prob- v _%Ym v _ Ym
lem is considered in the framework of the Boussinesq ap- mEgz T X

proximation[1] (for details, see the AppendixThe nonlin- o - .
ear equations governing convection in a two-layer system Eliminating the pressure and defining the vorticity
have the following forn{12]:

(m=1,2.

MWmz IWmx

(917 - > ¢m L]
M (G V)= — VPt €V 26+ b, GIT . 7, X oz

at
we can rewrite the boundary-value problem in the following
T 5 VT —diZT 1 form:

e R " . dd Y, I A, I JaT

m m m m m 2 m

= + —
V- 3,=0. oz ox ox oz CmV" ¢t DG ax

®

Here, v m=(Umx,Umy,Um7) is the velocity vectorT, is the
temperature, ang,, is the pressure in thenth fluid; c, V2m=— bm 9
=b,;=d;=1; c,=1/v, b,=1/8, d,=1/x; Gr=gB,0a3/v?
is the Grashof number, Prv,/y; is the Prandtl number for 0T I 0Ty I T di
the liquid in layer 1,y is the unit vector directed vertically —t— —— — —=—"V?T,, (m=1,2,
. : Lo ) ot az  Ix ax dz  Pr
upward. The conditions on the isothermic rigid horizontal

boundaries are (10
= = — ex+ = J
v1=0, Ty ex+1, z=1, 1:%: T——ex+1, z=1, (11)
v,=0, T,=—eXx, z=-a, (2
wheree=Apa, />0 is the nondimensional parameter char- :'9_% =0 ——ex. 7z=-—a (12)
.. . 2 ’ 2 ’ ’
acterizing the horizontal component of the temperature gra- Iz
dient. The boundary conditions on the interfaee0 include
conditions for the tangential stresses, AP, I,
1= ¢>=0, o7 9z’ nd1=d¢,, z=0, (13
dU1x  JUox duiy  duay —0 3
"oz " oz "az oz T @
dTy dT,  Grg
T1=Ty, = = (14

the continuity of the velocity field, oz 9z “Gr’
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Opy 0T allel. In order to investigate the development of the anticon-
m= = (9—X=0, (15  vection on the background of the convective flow, generated
by the horizontal temperature gradient, we have performed

m=1,2, x=0L. nonlinear simulations of the boundary-value probléBi

(15). The finite-difference method has been used. Equations
In the absence of the horizontal temperature gradient (and boundary conditions were approximated on a uniform

=0), the systen{8)—(15) has a solution mesh using a second-order approximation for the spatial co-
ordinates. The nonlinear equations were solved using an ex-
1=1,=0, TO=1+A(z-1), TP=Ay(z+a), plicit scheme on a rectangular uniform meshx&5 (L

(16) =4), 84x56 (L=16), 168x56 (L=232). The Poisson equa-
tion was solved by the iterative Liebman successive over-
(17) relaxation method on each time step: the accuracy of the
solution was 10*. The Kuskova and Chudov formuls8],
providing second-order accuracy, were used for the approxi-
which corresponds to the mechanical equilibrium state. It isnation of the vorticity on the solid boundaries. At the inter-
known, however, that the mechanical equilibrium state is unface the expression for the vorticity is approximated with

stable with respect to the anticonvective instability mechasecond-order accuracy for the spatial coordinates and have a
nism in a certain region of parameters Gr ang, Gt0]. If  form

e#0, an analytical solution can be obtained only in the limit

_1-akGry/Gr _ k(1+Grqg/Gr)

A H —l
1 1+ax 2 1+ax

L—oo. This solution describes a parallel flow,,= ¢y(2), —2[ W (X,—AZ)+ h1(X,A2Z)]
and the distortion of the temperature profile) due to the $1= (A2)%(1+ 7) ’ (18)
advection of heat by this flom,(z) (m=1,2). The explicit
expressions for functiong,(z) and 6,,(z) are given in the 2(%,0)= ¢1(x,0). (19
Appendix.

In the finite cavity ( <) the flow is nearly parallel in Here Ax, Az are the mesh sizes for the corresponding

the middle part of the cavitycore region, while in the end coordinates. The temperatures on the interfaces were calcu-
regions near the lateral walls the flow is essentially nonpartated by the second-order approximation formulas

[AT5(X,—AZ)=Ty(X,—2A2) ]+ k[4T1(X,Az2) —T1(X,2A2)]

T1(X,0)=T,(x,0 = 3T

(20

The details of the numerical method can be found in theprofile is shown in Fig. &). Typical stationary anticonvec-
book of Simanovskii and Nepomnyashc2]. tive flows in the former case DA;<A,) are shown in Fig.
3. There are two different streamline patterns: patfeffig.
3(a)] and patterrB [Fig. 3(b)]. In the case of the patter,
. NUMERICAL RESULTS there exists a negative temperature deviatiop(x,z)
In this section we present the results of the numerical Tim(2) in the m|_ddle of the c_aV|t)[F|g_. 3(9)]' which pro
. duces an extensive descending motion in the upper layer
solution of the boundary-value problei®)—(15) for the real . S X
A - . (with nearly vanishing temperature gradigrnd a relatively
two-liquid system silicone 0i(10 cS—ethylene glycol (1 S K vi itv-induced di ‘on in the | |
=1 cnrf/s) with the following set of parameterp=0.846, wgah viscosity-induce ascedq ng moﬂﬁn Int ? owlgr ayer
7= 0.549, v=0.6493 k= 0.6194,y = 1.096, 3= 1.4516, the (with a strong positive gradientnear the interfacdFig.

: 3(a)]. Near the lateral boundaries, a positive deviation of the
\Ixavir%ngﬂ— ?umber R#94. The calculations were performed temperature generates an ascending motion in the upper

. A layer and a descending motion near the interface in the lower
In the casee=0, the mechanical equilibrium sta{&6), Y 9

(17) becomes unstable due to the anticonvective instability if -+
Gr is large enough. As was explained in Rgf0], one can  _____ -+
expect the appearance of anticonvection in two cades) ] @ O
<A;<<A,, (2) 0<A,<A;. According to formulag17), the _-Z- 2 %
first case takes place as 43¢#0 and Gr is close but larger —_ — —_—
thanaxGrq . Similarly, the second case takes place ag Gr
<0, and Gr is close but larger tha@ry| [see Fig. 2a)].
Note that in the case OGr<axGry one obtains tha#; FIG. 2. Temperature profiles in the two-layer system under the

<0, A,>0, which corresponds to the profile of Fig(b2  joint action of the external heating and heat sou(siek) on the
Similarly, in the case Gy<0, 0<Gr<|Grg| the temperature interface. The anticonvection appears in the dase

a b c
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0.0157 ---- =7 2 0.00811 -----
; ¥ 0

15 00161 -~

FIG. 3. Streamlinega),(b) and isolines of the temperature de-
viations (c) for the steady anticonvective motions (€3717, Gp
=6000,L=4, e=0). 0 1 2 8 4

layer, in a similar way. In the case of pattdnthe negative _ o

temperature disturbance is located near the lateral bound- FIG. 4. Streamlinega)~(c) and isolines of the temperature de-
aries, and the positive temperature disturbance is located ifjations (@ f?; Gr=3r11, Gb:?goo"-ﬂ'? (@ €=1.45<10"%,
the middle of the cavity. For both kinds of patterns, (0) €=3x107% (0).(d) =5x10"%

Um(X,2,1) = — (L —X,2,1), (21 With the decrease in the Grashof number {S0, 0
<Gr<axGrqg or GIp<0, 0<Gr<|Gry|), the signs of the
Tm(X,2,t) =T (L—X,2,1). (22)  equilibrium temperature gradients andA, become differ-

ent[Figs. 2b) and 2c)]. In the case= 0, the anticonvection

Let us consider now the influence of a horizontal temperaand the Rayleigh-Benard instability mechanism act simulta-
ture gradient on the structure described above. Foreatlye  neously (see patternB in Fig. 5. The influence of the
symmetry conditiong21), (22) are violated. In the case of Rayleigh-Benard(bulk) instability mechanism leads to an
patternA, the positive vortex near the cold wall in the upper obvious change of the roll's shape in comparison with that of
layer is suppressefsee Figs. @) and 4b)]. Finally, the the pure anticonvection, which is essentially connected with
unicell structure, typical for heating from the lateral wall, is the interface/cf. Fig. 3b)]. The suppression of the positive
established in the upper layfFig. 4(c)]; the fields of tem-  vortex which is located near the hot wall is shown in Figs.
perature deviations T, (x,2) =Tn(x,2) —To(2) —ex are  6(a)—6(c). Temperature deviations corresponding to the last
shown in Fig. 4d). Similarly, in the case of patterB the  structure are presented in Figd The results of simula-
positive vortex is suppressed near the hot wall. tions described above are summarized in Fig. 7. Note that in
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2 0.113 ----
0.0539 -
0,00492 -
-0.0637 -~
-0.123 -
1
0
2 0.104 -~
0.0109 -~
-0.0686 ---
-0.126 -----
1
0
2 -0.8219 -
-0,0867 ~—-
-0.119 -~
<0.151 -~
FIG. 5. Streamlinesa) and isolines of the temperature devia- §
tions (b) in the region of the combined action of anticonvection and 11
Rayleigh-Benard convection for &13000, Gp=6000, L=4,
e=0. T
L L —l L 1 1 1 0
the case of the pure anticonvection the transition to the uni-° 1 2 3 4
cellular flow takes place for much smaller values eofA c
similar evolution of the flow pattern has been observed in the
case G<0, Gr>Gry (see Fig. & : 2 Qotes
Another scenario of the transition to the unicell structure { i 00268 —
takes place in the case when the anticonvection and the .- 0.0754 -

Rayleigh-Benard instability mechanism act simultaneously &
(Grg<0, GI<|Grg|, A;>0, A,<0). In the absence of the [
horizontal temperature gradieré=0) streamlines and tem-
perature deviations satisfy the symmetry conditid@$),

(22) [see Figs. 1@) and 1Qb)]. With the increase ot the ; ; .
symmetry conditions are violated and the negative vortex o 1 2 3 4

suppresses the positive one in the lower Idgee Figs. &) d
and 9d)].

. : FIG. 6. Streamlinesa)—(c) and isolines of the temperature de-
. <0. -
At the definite region 0.007 €e<0.0095 the steady mo iations (d) for Gr=3000, Gp=6000,L=4; (@ e=1.1X10°Z, (b)

tion becomes unstable and regular oscillations develop in thé_ Y ~ )
system. The sizes of the vortices are not changed, but the 1.5¢10°% (O.(d) e=5x10"%.
shape of the streamlines and the intensity of the motiom, are positive, anticonvection is the only possible mecha-
changes slightlfsee Figs. 8) and 9f)]. The period of 0s- nism of instability in the system. The streamlines and the
cillations is almost independent ef temperature fields satisfy the symmetry conditi@@b, (22).

As €>0.0095 the steady one-vortex motion, filling in One can see the rather intensive motion in the upper layer
practice the whole volume in the bottom layer, is realized inwith the nearly vanishing temperature gradient and the mul-
the systen{Figs. 99) and 9h)]. When € grows, the maxi- tistore structure in the lower layer, characterized by the
mum of the stream function for the one-vortex motion isstrong temperature gradient.
shifted towards the hot lateral wall. The transitions between The inclined horizontal temperature gradient leads to the
different flow regimes are shown in Fig. 10. violation of symmetry conditiong21), (22) in the casee

Now let us consider the case of long cavitids=(16). >0. The most intensive vortices are situated in the top layer
The streamline pattern corresponding to the pure anticonvegear the cold wal[see Figs. 1(b)—11(e)]. With the increase
tive flow for Gig>0, Gr>akGry (0<A;<A;), €e=0 is  of A, the intensity of the motion grows and the vortices have
shown in Fig. 11a). Since the temperature gradierts and  the tendency to become longer.
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A A
0 1103 2-18° 3163

4910° 50103 € come preferable in the systeig. 12d)].
Let us take the cade= 32, G <0. If e=0, sinceA; and
A, are positive, anticonvection is realized in the system. The
symmetric motion, presented in Fig. (88 corresponds to
the nearly vanishing temperature gradient in the lower layer
4 Ad — : b—rps Y - and the strong positive gradient in the upper layer. With the
0 210 410 € increase ofe the symmetry of the structure is destroyed and
the most intensive motion takes place mainly near the hot
b wall [Figs. 13b) and 13c)]. At larger values ofe one can
FIG. 7. Diagrams of regime&) in the case of pure anticonvec- Obtain the coexistence of the “multicell” structure near the
tion, Gr=3717, Gp=6000,L=4; (b) in the case of the combined hot wall and the one-vortex motion near the cold Wake
action of anticonvection and Rayleigh-Benard convection, GrFig. 13d)].
=3000, GK=6000,L=4. A, two-vortex motion;¥, one-vortex
motion.

Y ./\/ﬁ, A4 creaseqFigs. 12Zb) and 12c)]. Finally, the long cells be-

a

IV. CONCLUSION

In the case G§<0, Gr>|GrQ| (0<A,<A;, €=0) the The interaction between the anticonvection generated by
most intensive motion takes place in the lower layer and theéhe external heating from above and the interfacial heat re-
multistore structure is realized in the upper laysee Fig. lease, and the flow, caused by the inclined horizontal tem-
12(a)]. The inclusion of the horizontal temperature gradientperature gradient, is investigated. Nonlinear finite-amplitude
leads to the suppression of the vortices near the cold wall. Atonvective regimes in the real two-liquid system silicone oll
the larger values ok, the intensity of these vortices de- (10 cS—ethylene glycol have been studied. Different sce-

2 00131 - 2 000358 -
0.00654 0.00889 -

,,,,,,,,,, _0‘01 Jr—

-0.00654 --- 4 -0.0186 ----
-0.0131 -~ -0.0236 -

L L 1 i 1 I I 0 . 0
0 1 2 3 4 0 1 2 3 4
! d
0.000967 -----
2 0.00038 2 -0.0159 ~-—-
-0.000247 0.0391 -----
-0.000853 20.0624 e
-0.00146 ----- ] -0.0857 -~
-0.109 -~

0 1 2 3 4
b
2 0.0087 - 0.0396 -
0.000401 -+~
0.00651
. 20128 - -0.0139 - -

FIG. 8. Streamlinega),(c)—(e) and isolines of the temperature deviatidig,(f) for Gr=15000, Gp=—15000,L=4; (a),(b) €=0;
(c) €=2.78<107%; (d) e=5%X107%; (&),(f) e=5%x1072.
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2 0.109 ---- 2 000842 --—--

o658 e

0.0543 298

- b 0.109 ---- . 0144 -

2 0.0759 ----- 2 0.00439 ----

2 0.101 -----
0.0467 ----
0.00732
] 0.0614 -~
-0.115 -----
1
0
0 1 2 3 4
c
2 0.0875 -----
0.0347 ----.
0.0181 -
i 0.0709 --~
-0.124 ---.-
1
0
(] 1 2 3 4
d h

FIG. 9. Streamlineda),(c)—(g) and isolines of temperature deviatiofis),(h) for Gr=11500, Gs=—15000,L=4; (a),(b) e=0;
(c) e=2.5x10°3% (d) e=5%x10"3; (e),(f) e=8.7x10"3%; (g),(h) e=5%10 2.

narios of transition to the unicell structures are considered.dient, regular oscillations develop in the system. The coex-
It is remarkable that we observe typicafitationarymul-  istence of the multicell structure near the hot wall and the

ticellular patterns, though the instability of thHkw (A7), one-vortex motion near the cold wall in the long cavities

(A8) with respect to two-dimensional disturbances should béave been observed.

obviously oscillatory. This phenomenon was formerly ob-

served in the case of a buoyant-thermocapillary flow gener- ACKNOWLEDGMENTS

ated by a horizontal temperature gradiésee Ref[19] and This work was supported by the Israeli Science Founda-
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A | 1 A | Y 1 Y
0 2.10* 410% /\’49-167‘ 50-10° €
a
a
A LA LA, A0 O, OOW AN Y 2 0,017
0 4169 810 /\’50-10‘-3 £ 14 odoset
0.00133
0.0119 —--
b 0 o224 ---
o}
FIG. 10. Diagrams of regime&) in the case of pure anticon- b

vection, Ge=15 000, Gp=—15000,L=4; (b) in the case of the
combined action of anticonvection and Rayleigh-Benard convec- -
tion, Gr=11500, Gp=—-15000, L=4. A, two-vortex steady
motion; O, two-vortex oscillatory motion;¥, one-vortex steady
motion.

o
4
f
[}
©
=

APPENDIX: JUSTIFICATION OF THE MODEL

-

As was mentioned in Sec. Il, the consideration of the
anticonvection is given under two assumptiofis: the de-
formation of the interface is disregardd@) the thermocap- d
illary effect is neglected. Let us discuss the physical origin FIG. 12. Streamlines for Gr15000, Gg= — 15000, L= 16:
and the validity conditions of these assumptions. (@) =0, (b) e=0.001,(c) e=0.003,(d) c—001. '

(1) The deformation of the interface is a non-Boussinesq
effect that has to be disregarded when the Boussinesq agg, js inversely proportional to Ga and thus is negligible in
proximation is used for the description of the buoyancy ef- he region of validity of the Boussinesq approximati@x-
fect[21,12. Inde_ed, the Bouss_inesq approximation is base ept the case of two fluids with very close densitig]).
on the egssm.zjmptlorﬁla<l, while the Grashof number Gr tpg consideration of the interfacial deformation without tak-
=gB 0a;/v1=0(1). Thus, the Galileo number Ga jng into account other non-Boussinesq effects can lead to
=gp3/vi=GriB,0 is assumed to be infinitely large. The artifacts(for more details, see Ref22]).
deformation of the interface caused by the natural convective (2) |n the presence of the thermocapillary efféitte sur-
face tensionr is a function of temperatur€), the boundary
conditions(3) include additional terms:

(=]

Jv 1x (;’UZX

Jv 1y Jv 2y
7 = =
Jz Jz

K> dz dT gy’

b
2
0.0438 ----
1 1 0.0203 -----
0.00313
0 o 0.0266 ~--~
-0.05 -----
¢
2 0.0776
0776 - - ] 0.068 ----
1 0.0322 ----- 14 0.0317 -+
0.0132 .
) i 0.00463
-0.0586 --- pl s el gmco_Camooo o T ee
0 0.0409
0.104 ---- 0 00773~
0 5 10 15 20 25 30 '
e d

FIG. 11.
(a) €=0, (b) €=0.0145,(c) e=0.05,(d) €e=0.1, (e) e=0.15.

Streamlines for Gr3717, Gp=6000, L=16: FIG. 13. Streamlines for Gr15000, Gg=—15000,L =32:

(@) €=0, (b) €=0.003,(c) €=0.01,(d) e=0.025.
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z=0. (A1)

The nondimensional boundary conditiddi3) has the
form

PHYSICAL REVIEW E 66, 056305 (2002

In order to estimate the influence of the thermocapillary
effect on the convective flows, let us consider the parallel
flow in the system of infinite layersL(—«). Solving the
system of equations and boundary conditi¢8)s-(15), (A2)
under the assumptions

gt M A2
nb1=bot 5 (A2)
where the Marangoni number Yn=¥n(2), Tn=—ex+TR(2)+0n(2),  (Ad)
do\ fa,
M=|—-— : (A3)  whereT(z) are given by Eqs(16) and (17), we find
dT ViX1 m
|
Gr 4B8+3Bna+vad B+vad (Byp—va?)a Mena
—— | A_;3 2 _ 3_95,2
¥(2) 24[Z 261t 7 T BAi ) 228 ey | AArgaprl 2EtD. (RS
Gr 3a%v+4ad+ By (va®+pB)y  (Bp—vada Men
- 4 3 2 _ 3 2
V(D)= = 55| VN T a1t ) Ti7a T2 21598 | da(izga)pr? T2AZ+a2), (AP)

Gr[z* ,128+7Bna+5v%

,4B+25va°~21B87na

4B8—5va*+987a

el(Z)ZPr(Z_l)[ﬂ 5 2 208(1+ a)

. k(4B—5vad+98na)— ya’(4va®—58n+9va?)
a

120B(1+ na)(1+ ka)

Gre?y

vzt 7va?+12alvy+587 3 4vnad+2587—21va®

1208(1+ 7a) 1208(1+ 7a)
Me2na [22 522 z  a(k+ya
ma |z 5z z alktxall o
4R(1+7a)| 4 12 12" 121+ax)

) a(587—9va’—4vnad)

0,(z)=Pr(z+a)

243 |5 40a(l+ 7a)

1201+ 7a)

2 5az a’z a’(k+ya)

B K(4,8—5Va3+9,817a)—Xa2(9va2+4v17a3—5,877)} Me?ny

120x(1+ 7a)(1+ xa)

1201+ a)

—+ +
da(l+qa)| 4 = 12 ' 12 12y(1+«a)

(A8)

One can see that the expressions #g(z), 6,(z) consist of two parts: the part proportional to Gr which describes the

contribution of the buoyancy convection, and the part proportional to M/Pr, which describes the contribution of the thermocap-

illary convection. The latter can be neglected if

M (—da/dT)
= <

GrPr

That means that the thermocapillary effect can be neglected in comparison to the buoyancy effect, if the thicknesses of the

layers are sufficiently large.
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