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Anticonvection with an inclined temperature gradient
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Anticonvection, caused by external heating from above in the presence of heat sources~or sinks! homoge-
neously distributed on the interface, is investigated in the presence of an imposed horizontal temperature
gradient. Numerical finite-difference simulations of the finite-amplitude convective regimes have been per-
formed for the two-layer system of fluids. The interface is assumed to be flat. We discuss different scenarios of
transition between multicell regimes characteristic of a vertical temperature gradient, and unicell structures
induced by horizontal gradients. The coexistence of these two regimes in sufficiently long cavities has been
obtained. Regular oscillations are also predicted in other situations.
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I. INTRODUCTION

It is well known @1# that in a horizontal fluid layer heate
from above, all the disturbances decay either in a monoto
or oscillatory manner, and the mechanical equilibrium st
is realized in the system. Paradoxically, it is not actua
correct in the presence of the interface between two fluid
was shown by Welander@2# that when the temperature gra
dient is directed vertically upwards, the two-layer syste
consisting of two immiscible viscous fluids of infinite thick
nesses, may become unstable with respect to monotonic
turbances. The specific non-Rayleigh mechanism of insta
ity ~anticonvection! is realized in the system. Thi
mechanism of instability may appear only under the defin
condition that fluids with considerably different physic
properties must be taken. Particularly, the heat expansion
efficient of the upper layer must be much smaller than tha
the lower layer, and the thermal diffusivity of the lower lay
must be much higher than that of the upper one~or vice
versa!. The linear stability boundaries~for layers of finite
thicknesses! were determined in Ref.@3# and the finite-
amplitude regimes of anticonvection were obtained in R
@4# ~see also Refs.@5,6#!.

The phenomenon of anticonvection was considered
rather exotic during a long time. As the matter of fact, on
one physical system~water-mercury! satisfying the condi-
tions for the existence of anticonvection was found@3#. It
turns out however that the appearance of anticonvection
be simplified when the interface serves as a source or sin
heat @7#. Moreover, it was found in Refs.@8,9# that in the
presence of an interfacial heat source~sink! the anticonvec-
tion could be generated inany system of two semi-infinite
layers. It was shown that the anticonvection appears in
situation where the temperature gradient in one fluid is m
smaller than that in another fluid. The difference between
temperature gradients, sufficient for the appearance of
anticonvection, can be caused by the natural difference
thermophysical parameters of fluids, as in the case of
water-mercury system, or it can be produced artificially
heating or cooling the interface.

The general analysis of conditions for the appearance
1063-651X/2002/66~5!/056305~10!/$20.00 66 0563
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anticonvection in the system of layers with finite thickness
was done in Ref.@10#. The nonlinear regimes of anticonvec
tion in a system of layers with finite thicknesses in the pr
ence of heat release on the interface were investigated in
@11#.

Under experimental conditions, the temperature grad
in the system is not perfectly vertical. The horizontal co
ponent of the temperature gradient generates a conve
flow. The influence of this flow on the convective patter
generated by the vertical temperature gradient has been
vestigated in detail in the case of the usual Rayleigh-Ben
convection~see Refs.@13–15#!. The stability of thermocap-
illary flows with the inclined temperature gradient was stu
ied in Refs.@16,17#. To our knowledge, the interaction be
tween the anticonvection caused by heating from above
the convective flow produced by the horizontal compon
of the temperature gradient has never been studied be
That is the goal of the present paper.

In Sec. II, the mathematical formulation of the proble
and the numerical method are presented. Section III is
voted to the consideration of flows generated by the jo
action of the vertical and horizontal components of the te
perature gradient and heat release on the interface. Se
IV contains some concluding remarks.

II. FORMULATION OF THE PROBLEM
AND THE NUMERICAL METHOD

Let a rectangular cavity with solid boundaries be fille
by two immiscible viscous fluids~see Fig. 1!. The tempera-
ture on the horizontal platesz5a1 and z52a2 is fixed in
the following way: T(x,y,a1 ,t)52Ahx1u,T(x,y,2a2 ,t)
52Ahx,Ah.0. The vertical lateral boundariesx50 andx
5 l are heat insulated. The constant heat release at the
Q0 (Q0 may be positive or negative! is set on the interface
The interface is assumed to be flat and undeformable.
assume also that the thicknesses of the layers are sufficie
large, so that the thermocapillary effect is negligible as co
pared to the buoyancy effect. A more detailed discussion
these assumptions is given in the Appendix. All variab
referring to the upper layer are marked by index 1, and
variables referring to the lower layer are marked by index

Let us use the following notations:
©2002 The American Physical Society05-1
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r5r1 /r2 , n5n1 /n2 , h5h1 /h2 , k5k1 /k2,

x5x1 /x2 , b5b1 /b2 , a5a2 /a1 , L5 l /a1 .

Hererm , nm , hm , km , xm , bm , andam are, respectively,
the densities, kinematic and dynamic viscosities, heat c
ductivity, thermal diffusivity, heat expansion coefficient, a
the thickness of themth layer (m51,2). As the units of
length, time, velocity, pressure, and temperature, we cho
a1 , a1

2/n1 , n1 /a1 , r1n1
2/a1

2, andu, respectively. The prob
lem is considered in the framework of the Boussinesq
proximation@1# ~for details, see the Appendix!. The nonlin-
ear equations governing convection in a two-layer sys
have the following form@12#:

]vW m

]t
1~vW m•¹W !vWm52¹W pm1cm¹2vWm1bmGrTmgW ,

]Tm

]t
1vW m•¹W Tm5

dm

Pr
¹2Tm , ~1!

¹W •vWm50.

Here, vW m5(vmx ,vmy ,vmz) is the velocity vector,Tm is the
temperature, andpm is the pressure in themth fluid; c1

5b15d151; c251/n, b251/b, d251/x; Gr5gb1ua1
3/n1

2

is the Grashof number, Pr5n1 /x1 is the Prandtl number fo
the liquid in layer 1,gW is the unit vector directed vertically
upward. The conditions on the isothermic rigid horizon
boundaries are

v150, T152ex11, z51,

v250, T252ex, z52a, ~2!

wheree5Aha1 /u.0 is the nondimensional parameter cha
acterizing the horizontal component of the temperature g
dient. The boundary conditions on the interfacez50 include
conditions for the tangential stresses,

h
]v1x

]z
5

]v2x

]z
, h

]v1y

]z
5

]v2y

]z
, z50; ~3!

the continuity of the velocity field,

FIG. 1. Geometrical configuration of the two-layer system a
coordinate axes.
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v15v2 , z50; ~4!

the continuity of the temperature field,

T15T2 , z50; ~5!

and the continuity of the heat flux normal components,

k
]T1

]z
5

]T2

]z
2k

GrQ
Gr

, z50, ~6!

where GrQ5gb1Q0a1
4/n1

2k1 is the modified Grashof numbe
determined by the intensity of the interfacial heat relea
The conditions on the solid lateral boundaries, which
assumed to be thermally insulated, are

vm50,
]Tm

]x
50, m51,2, x50,L. ~7!

For two-dimensional flows (vmy50; the fields of physical
variables do not depend ony!, we can introduce the stream
function c,

vmx5
]cm

]z
, vmz52

]cm

]x
~m51,2!.

Eliminating the pressure and defining the vorticity

fm5
]vmz

]x
2

]vmx

]z
,

we can rewrite the boundary-value problem in the followi
form:

]fm

]t
1

]cm

]z

]fm

]x
2

]cm

]x

]fm

]z
5cm¹2fm1bmGr

]Tm

]x
,

~8!

¹2cm52fm , ~9!

]Tm

]t
1

]cm

]z

]Tm

]x
2

]cm

]x

]Tm

]z
5

dm

Pr
¹2Tm ~m51,2!,

~10!

c15
]c1

]z
50, T152ex11, z51, ~11!

c25
]c2

]z
50, T252ex, z52a, ~12!

c15c250,
]c1

]z
5

]c2

]z
, hf15f2 , z50, ~13!

T15T2 , k
]T1

]z
5

]T2

]z
2k

GrQ
Gr

, ~14!

d
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cm5
]cm

]x
5

]Tm

]x
50, ~15!

m51,2, x50,L.

In the absence of the horizontal temperature gradiene
50), the system~8!–~15! has a solution

c15c250, T1
~0!511A1~z21!, T2

~0!5A2~z1a!,
~16!

A15
12ak GrQ /Gr

11ak
, A25

k~11GrQ /Gr!

11ak
, ~17!

which corresponds to the mechanical equilibrium state. I
known, however, that the mechanical equilibrium state is
stable with respect to the anticonvective instability mec
nism in a certain region of parameters Gr and GrQ @10#. If
eÞ0, an analytical solution can be obtained only in the lim
L→`. This solution describes a parallel flow,cm5cm(z),
and the distortion of the temperature profile~16! due to the
advection of heat by this flow,um(z) (m51,2). The explicit
expressions for functionscm(z) andum(z) are given in the
Appendix.

In the finite cavity (L,`) the flow is nearly parallel in
the middle part of the cavity~core region!, while in the end
regions near the lateral walls the flow is essentially nonp
th

ica

d

y

r
r
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allel. In order to investigate the development of the antico
vection on the background of the convective flow, genera
by the horizontal temperature gradient, we have perform
nonlinear simulations of the boundary-value problem~8!–
~15!. The finite-difference method has been used. Equati
and boundary conditions were approximated on a unifo
mesh using a second-order approximation for the spatial
ordinates. The nonlinear equations were solved using an
plicit scheme on a rectangular uniform mesh 56356 (L
54), 84356 (L516), 168356 (L532). The Poisson equa
tion was solved by the iterative Liebman successive ov
relaxation method on each time step: the accuracy of
solution was 1024. The Kuskova and Chudov formulas@18#,
providing second-order accuracy, were used for the appr
mation of the vorticity on the solid boundaries. At the inte
face the expression for the vorticity is approximated w
second-order accuracy for the spatial coordinates and ha
form

f15
22@c2~x,2Dz!1c1~x,Dz!#

~Dz!2~11h!
, ~18!

f2~x,0!5hf1~x,0!. ~19!

Here Dx, Dz are the mesh sizes for the correspondi
coordinates. The temperatures on the interfaces were ca
lated by the second-order approximation formulas
T1~x,0!5T2~x,0!5
@4T2~x,2Dz!2T2~x,22Dz!#1k@4T1~x,Dz!2T1~x,2Dz!#

3~11k!
. ~20!
-
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The details of the numerical method can be found in
book of Simanovskii and Nepomnyashchy@12#.

III. NUMERICAL RESULTS

In this section we present the results of the numer
solution of the boundary-value problem~8!–~15! for the real
two-liquid system silicone oil~10 cS!–ethylene glycol (1 S
51 cm2/s) with the following set of parameters:r50.846,
h50.549,n50.6493,k50.6194,x51.096,b51.4516, the
Prandtl number Pr594. The calculations were performe
with a51.

In the casee50, the mechanical equilibrium state~16!,
~17! becomes unstable due to the anticonvective instabilit
Gr is large enough. As was explained in Ref.@10#, one can
expect the appearance of anticonvection in two cases:~1! 0
,A1!A2 , ~2! 0,A2!A1 . According to formulas~17!, the
first case takes place as GrQ>0 and Gr is close but large
than akGrQ . Similarly, the second case takes place as GQ
,0, and Gr is close but larger thanuGrQu @see Fig. 2~a!#.
Note that in the case 0,Gr,akGrQ one obtains thatA1
,0, A2.0, which corresponds to the profile of Fig. 2~b!.
Similarly, in the case GrQ,0, 0,Gr,uGrQu the temperature
e

l

if

profile is shown in Fig. 2~c!. Typical stationary anticonvec
tive flows in the former case (0,A1!A2) are shown in Fig.
3. There are two different streamline patterns: patternA @Fig.
3~a!# and patternB @Fig. 3~b!#. In the case of the patternA,
there exists a negative temperature deviationTm(x,z)
2Tm

0 (z) in the middle of the cavity@Fig. 3~c!#, which pro-
duces an extensive descending motion in the upper la
~with nearly vanishing temperature gradient!, and a relatively
weak viscosity-induced ascending motion in the lower la
~with a strong positive gradient! near the interface@Fig.
3~a!#. Near the lateral boundaries, a positive deviation of
temperature generates an ascending motion in the u
layer and a descending motion near the interface in the lo

FIG. 2. Temperature profiles in the two-layer system under
joint action of the external heating and heat source~sink! on the
interface. The anticonvection appears in the case~a!.
5-3
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layer, in a similar way. In the case of patternB, the negative
temperature disturbance is located near the lateral bo
aries, and the positive temperature disturbance is locate
the middle of the cavity. For both kinds of patterns,

cm~x,z,t !52cm~L2x,z,t !, ~21!

Tm~x,z,t !5Tm~L2x,z,t !. ~22!

Let us consider now the influence of a horizontal tempe
ture gradient on the structure described above. For anye, the
symmetry conditions~21!, ~22! are violated. In the case o
patternA, the positive vortex near the cold wall in the upp
layer is suppressed@see Figs. 4~a! and 4~b!#. Finally, the
unicell structure, typical for heating from the lateral wall,
established in the upper layer@Fig. 4~c!#; the fields of tem-
perature deviations Tm8 (x,z)5Tm(x,z)2Tm

0 (z)2ex are
shown in Fig. 4~d!. Similarly, in the case of patternB the
positive vortex is suppressed near the hot wall.

FIG. 3. Streamlines~a!,~b! and isolines of the temperature d
viations ~c! for the steady anticonvective motions (Gr53717, GrQ
56000,L54, e50!.
05630
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With the decrease in the Grashof number (GrQ.0, 0
,Gr,akGrQ or GrQ,0, 0,Gr,uGrQu), the signs of the
equilibrium temperature gradientsA1 andA2 become differ-
ent @Figs. 2~b! and 2~c!#. In the casee50, the anticonvection
and the Rayleigh-Benard instability mechanism act simu
neously ~see patternB in Fig. 5!. The influence of the
Rayleigh-Benard~bulk! instability mechanism leads to a
obvious change of the roll’s shape in comparison with tha
the pure anticonvection, which is essentially connected w
the interface@cf. Fig. 3~b!#. The suppression of the positiv
vortex which is located near the hot wall is shown in Fig
6~a!–6~c!. Temperature deviations corresponding to the l
structure are presented in Fig. 6~d!. The results of simula-
tions described above are summarized in Fig. 7. Note tha

FIG. 4. Streamlines~a!–~c! and isolines of the temperature de
viations ~d! for Gr53717, GrQ56000, L54; ~a! e51.4531023,
~b! e5331023; ~c!,~d! e5531022.
5-4
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the case of the pure anticonvection the transition to the
cellular flow takes place for much smaller values ofe. A
similar evolution of the flow pattern has been observed in
case GrQ,0, Gr.GrQ ~see Fig. 8!.

Another scenario of the transition to the unicell structu
takes place in the case when the anticonvection and
Rayleigh-Benard instability mechanism act simultaneou
(GrQ,0, Gr,uGrQu, A1.0, A2,0). In the absence of the
horizontal temperature gradient (e50) streamlines and tem
perature deviations satisfy the symmetry conditions~21!,
~22! @see Figs. 10~a! and 10~b!#. With the increase ofe the
symmetry conditions are violated and the negative vor
suppresses the positive one in the lower layer@see Figs. 9~c!
and 9~d!#.

At the definite region 0.007,e,0.0095 the steady mo
tion becomes unstable and regular oscillations develop in
system. The sizes of the vortices are not changed, but
shape of the streamlines and the intensity of the mo
changes slightly@see Figs. 9~e! and 9~f!#. The period of os-
cillations is almost independent ofe.

As e.0.0095 the steady one-vortex motion, filling
practice the whole volume in the bottom layer, is realized
the system@Figs. 9~g! and 9~h!#. When e grows, the maxi-
mum of the stream function for the one-vortex motion
shifted towards the hot lateral wall. The transitions betwe
different flow regimes are shown in Fig. 10.

Now let us consider the case of long cavities (L516).
The streamline pattern corresponding to the pure anticon
tive flow for GrQ.0, Gr.akGrQ (0,A1!A2), e50 is
shown in Fig. 11~a!. Since the temperature gradientsA1 and

FIG. 5. Streamlines~a! and isolines of the temperature devi
tions ~b! in the region of the combined action of anticonvection a
Rayleigh-Benard convection for Gr53000, GrQ56000, L54,
e50.
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A2 are positive, anticonvection is the only possible mec
nism of instability in the system. The streamlines and
temperature fields satisfy the symmetry conditions~21!, ~22!.
One can see the rather intensive motion in the upper la
with the nearly vanishing temperature gradient and the m
tistore structure in the lower layer, characterized by
strong temperature gradient.

The inclined horizontal temperature gradient leads to
violation of symmetry conditions~21!, ~22! in the casee
.0. The most intensive vortices are situated in the top la
near the cold wall@see Figs. 11~b!–11~e!#. With the increase
of Ah the intensity of the motion grows and the vortices ha
the tendency to become longer.

FIG. 6. Streamlines~a!–~c! and isolines of the temperature de
viations~d! for Gr53000, GrQ56000,L54; ~a! e51.131022; ~b!
e51.531022; ~c!,~d! e5531022.
5-5
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In the case GrQ,0, Gr.uGrQu (0,A2!A1 , e50! the
most intensive motion takes place in the lower layer and
multistore structure is realized in the upper layer@see Fig.
12~a!#. The inclusion of the horizontal temperature gradie
leads to the suppression of the vortices near the cold wal
the larger values ofe, the intensity of these vortices de

FIG. 7. Diagrams of regimes~a! in the case of pure anticonvec
tion, Gr53717, GrQ56000,L54; ~b! in the case of the combine
action of anticonvection and Rayleigh-Benard convection,
53000, GrQ56000, L54. n, two-vortex motion;., one-vortex
motion.
05630
e

t
t

creases@Figs. 12~b! and 12~c!#. Finally, the long cells be-
come preferable in the system@Fig. 12~d!#.

Let us take the caseL532, GrQ,0. If e50, sinceA1 and
A2 are positive, anticonvection is realized in the system. T
symmetric motion, presented in Fig. 13~a!, corresponds to
the nearly vanishing temperature gradient in the lower la
and the strong positive gradient in the upper layer. With
increase ofe the symmetry of the structure is destroyed a
the most intensive motion takes place mainly near the
wall @Figs. 13~b! and 13~c!#. At larger values ofe one can
obtain the coexistence of the ‘‘multicell’’ structure near th
hot wall and the one-vortex motion near the cold wall@see
Fig. 13~d!#.

IV. CONCLUSION

The interaction between the anticonvection generated
the external heating from above and the interfacial heat
lease, and the flow, caused by the inclined horizontal te
perature gradient, is investigated. Nonlinear finite-amplitu
convective regimes in the real two-liquid system silicone
~10 cS!–ethylene glycol have been studied. Different sc

r

FIG. 8. Streamlines~a!,~c!–~e! and isolines of the temperature deviations~b!,~f! for Gr515 000, GrQ5215 000,L54; ~a!,~b! e50;
~c! e52.7831024; ~d! e5531024; ~e!,~f! e5531023.
5-6
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FIG. 9. Streamlines~a!,~c!–~g! and isolines of temperature deviations~b!,~h! for Gr511 500, GrQ5215 000, L54; ~a!,~b! e50;
~c! e52.531023; ~d! e5531023; ~e!,~f! e58.731023; ~g!,~h! e5531022.
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narios of transition to the unicell structures are considere
It is remarkable that we observe typicallystationarymul-

ticellular patterns, though the instability of theflow ~A7!,
~A8! with respect to two-dimensional disturbances should
obviously oscillatory. This phenomenon was formerly ob
served in the case of a buoyant-thermocapillary flow gen
ated by a horizontal temperature gradient~see Ref.@19# and
references therein!. Recently, this phenomenon was e
plained by the analysis of the influence of lateral bounda
@20#.

Nevertheless, in the definite region of parametere, char-
acterizing the horizontal component of the temperature g
05630
.

e

r-

s

a-

dient, regular oscillations develop in the system. The co
istence of the multicell structure near the hot wall and
one-vortex motion near the cold wall in the long caviti
have been observed.
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APPENDIX: JUSTIFICATION OF THE MODEL

As was mentioned in Sec. II, the consideration of t
anticonvection is given under two assumptions:~1! the de-
formation of the interface is disregarded,~2! the thermocap-
illary effect is neglected. Let us discuss the physical ori
and the validity conditions of these assumptions.

~1! The deformation of the interface is a non-Boussine
effect that has to be disregarded when the Boussinesq
proximation is used for the description of the buoyancy
fect @21,12#. Indeed, the Boussinesq approximation is ba
on the assumptionb1u!1, while the Grashof number G
5gb1ua1

3/n1
25O(1). Thus, the Galileo number G

5gb1
3/n1

25Gr/b1u is assumed to be infinitely large. Th
deformation of the interface caused by the natural convec

FIG. 10. Diagrams of regimes~a! in the case of pure anticon
vection, Gr515 000, GrQ5215 000,L54; ~b! in the case of the
combined action of anticonvection and Rayleigh-Benard conv
tion, Gr511 500, GrQ5215 000, L54. n, two-vortex steady
motion; s, two-vortex oscillatory motion;., one-vortex steady
motion.

FIG. 11. Streamlines for Gr53717, GrQ56000, L516:
~a! e50, ~b! e50.0145,~c! e50.05, ~d! e50.1, ~e! e50.15.
05630
n

q
p-
-
d

e

flow is inversely proportional to Ga and thus is negligible
the region of validity of the Boussinesq approximation~ex-
cept the case of two fluids with very close densities@12#!.
The consideration of the interfacial deformation without ta
ing into account other non-Boussinesq effects can lead
artifacts~for more details, see Ref.@22#!.

~2! In the presence of the thermocapillary effect~the sur-
face tensions is a function of temperatureT!, the boundary
conditions~3! include additional terms:

h
]v1x

]z
5

]v2x

]z
2

ds

dT

]T

]x
, h

]v1y

]z
5

]v2y

]z
2

ds

dT

]T

]y
,

c-

FIG. 12. Streamlines for Gr515 000, GrQ5215 000,L516:
~a! e50, ~b! e50.001,~c! e50.003,~d! e50.01.

FIG. 13. Streamlines for Gr515 000, GrQ5215 000,L532:
~a! e50, ~b! e50.003,~c! e50.01, ~d! e50.025.
5-8
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z50. ~A1!

The nondimensional boundary condition~13! has the
form

hf15f21
hM

Pr

]T1

]x
, ~A2!

where the Marangoni number

M5S 2
ds

dTD ua1

n1x1
. ~A3!
ity

ii,
ia

ca

05630
In order to estimate the influence of the thermocapilla
effect on the convective flows, let us consider the para
flow in the system of infinite layers (L→`). Solving the
system of equations and boundary conditions~8!–~15!, ~A2!
under the assumptions
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whereTm
(0)(z) are given by Eqs.~16! and ~17!, we find
the
mocap-

es of the
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One can see that the expressions forcm(z), um(z) consist of two parts: the part proportional to Gr which describes
contribution of the buoyancy convection, and the part proportional to M/Pr, which describes the contribution of the ther
illary convection. The latter can be neglected if

M

GrPr
5

~2ds/dT!

gb1a1
2 !1.

That means that the thermocapillary effect can be neglected in comparison to the buoyancy effect, if the thickness
layers are sufficiently large.
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